Discovering Motifs With Transcription Factor Domain Knowledge

نویسندگان

  • Henry C. M. Leung
  • Francis Y. L. Chin
  • Bethany Man-Yee Chan
چکیده

We introduce a new motif-discovery algorithm, DIMDom, which exploits two additional kinds of information not commonly exploited: (a) the characteristic pattern of binding site classes, where class is determined based on biological information about transcription factor domains and (b) posterior probabilities of these classes. We compared the performance of DIMDom with MEME on all the transcription factors of Drosophila with at least one known binding site in the TRANSFAC database and found that DOMDom outperformed MEME with 2.5 times the number of successes and 1.5 times in the accuracy in finding binding sties and motifs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discovery of sequence motifs related to coexpression of genes using evolutionary computation.

Transcription factors are key regulatory elements that control gene expression. Recognition of transcription factor binding site (TFBS) motifs in the upstream region of coexpressed genes is therefore critical towards a true understanding of the regulations of gene expression. The task of discovering eukaryotic TFBSs remains a challenging problem. Here, we demonstrate that evolutionary computati...

متن کامل

MEME: discovering and analyzing DNA and protein sequence motifs

MEME (Multiple EM for Motif Elicitation) is one of the most widely used tools for searching for novel 'signals' in sets of biological sequences. Applications include the discovery of new transcription factor binding sites and protein domains. MEME works by searching for repeated, ungapped sequence patterns that occur in the DNA or protein sequences provided by the user. Users can perform MEME s...

متن کامل

Discovering Transcription Factor Binding Motif Sequences

Introduction In biology, sequence motifs are short sequence patterns, usually with fixed lengths, that represent many features of DNA, RNA, and protein molecules. Sequence motifs can represent transcription factor binding sites for DNA, splice junctions for RNA, and binding domains for proteins. Thus, discovering sequence motifs can lead to a better understanding of transcriptional regulation, ...

متن کامل

Discovering Motifs in Ranked Lists of DNA Sequences

Computational methods for discovery of sequence elements that are enriched in a target set compared with a background set are fundamental in molecular biology research. One example is the discovery of transcription factor binding motifs that are inferred from ChIP-chip (chromatin immuno-precipitation on a microarray) measurements. Several major challenges in sequence motif discovery still requi...

متن کامل

Sequence Motifs in MADS Transcription Factors Responsible for Specificity and Diversification of Protein-Protein Interaction

Protein sequences encompass tertiary structures and contain information about specific molecular interactions, which in turn determine biological functions of proteins. Knowledge about how protein sequences define interaction specificity is largely missing, in particular for paralogous protein families with high sequence similarity, such as the plant MADS domain transcription factor family. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing

دوره   شماره 

صفحات  -

تاریخ انتشار 2007